Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Arch Virol ; 166(8): 2109-2117, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1216221

ABSTRACT

Millions of people across the globe have been affected by coronavirus disease 2019 (COVID-19), which began in Wuhan, China, and is caused by SARS-CoV-2. COVID-19 has a variety of clinical characteristics and triggers immune responses required for the elimination of the viral agent. Currently, no effective treatment options are available for targeting SARS-CoV-2 infection. Repurposing of drugs such as chloroquine, thalidomide, and leflunomide alongside convalescent plasma is being employed as a therapeutic strategy. Clinical studies have shown that both asymptomatic and symptomatic patients can have an extremely active immune response that is largely attributable to immune system modulations. This includes cytokine storm syndrome (CSS), which affects the adaptive immune system, leading to exhaustion of natural killer (NK) cells and thrombocytopenia in some cases. This review examines the interaction of SARS-CoV-2 with the host immune system and the potential for the development of appropriate immunotherapy for the treatment of COVID-19.


Subject(s)
COVID-19/immunology , SARS-CoV-2/physiology , CD8-Positive T-Lymphocytes/immunology , COVID-19/therapy , Cytokine Release Syndrome/immunology , Endoplasmic Reticulum Stress/immunology , Humans , Immunotherapy , Inflammation , Killer Cells, Natural/immunology , Thrombocytopenia/immunology
2.
Exp Cell Res ; 396(1): 112276, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-752714

ABSTRACT

Autophagy is an evolutionary conserved catabolic process devoted to the removal of unnecessary and harmful cellular components. In its general form, autophagy governs cellular lifecycle through the formation of double membrane vesicles, termed autophagosomes, that enwrap and deliver unwanted intracellular components to lysosomes. In addition to this omniscient role, forms of selective autophagy, relying on specialized receptors for cargo recognition, exert fine-tuned control over cellular homeostasis. In this regard, xenophagy plays a pivotal role in restricting the replication of intracellular pathogens, thus acting as an ancient innate defense system against infections. Recently, selective autophagy of the endoplasmic reticulum (ER), more simply ER-phagy, has been uncovered as a critical mechanism governing ER network shape and function. Six ER-resident proteins have been characterized as ER-phagy receptors and their orchestrated function enables ER homeostasis and turnover overtime. Unfortunately, ER is also the preferred site for viral replication and several viruses hijack ER machinery for their needs. Thus, it is not surprising that some ER-phagy receptors can act to counteract viral replication and minimize the spread of infection throughout the organism. On the other hand, evolutionary pressure has armed pathogens with strategies to evade and subvert xenophagy and ER-phagy. Although ER-phagy biology is still in its infancy, the present review aims to summarize recent ER-phagy literature, with a special focus on its role in counteracting viral infections. Moreover, we aim to offer some hints for future targeted approaches to counteract host-pathogen interactions by modulating xenophagy and ER-phagy pathways.


Subject(s)
Autophagosomes/immunology , Bacterial Infections/immunology , Endoplasmic Reticulum/immunology , Host-Pathogen Interactions/immunology , Macroautophagy/immunology , Virus Diseases/immunology , Autophagosomes/metabolism , Bacteria/immunology , Bacterial Infections/genetics , Bacterial Infections/microbiology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/microbiology , Endoplasmic Reticulum/virology , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/immunology , Homeostasis/genetics , Homeostasis/immunology , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate , Lysosomes/immunology , Lysosomes/metabolism , Macroautophagy/genetics , Virus Diseases/genetics , Virus Diseases/virology , Viruses/immunology
SELECTION OF CITATIONS
SEARCH DETAIL